EYFS Progression of Skills - Mathematics

Object counting

Object counting									
I can use one-to-one correspondence when counting and understand that the last number said is the number in the set.	I can count up to 5 objects (including different sized objects) moving each as they are counted.		I understa be count arrangem is s	that objects can in any order or and the answer the same.	I can count up to 10 objects (including different sized objects) moving each as they are counted.		I can count out a given amount up to 10 (identified verbally or written) from a greater set.		I can reliably count up to 20 objects moving each as they are counted and also take amounts up to 20 from a greater set.
Matching quantities and numerals - Counting sets of objects									
I can use one to one correspondence when counting and I understand the last number said is the number in the set		I can count up to 3 objects (including different sized objects), moving each as they are counted. I can match the set to the numeral.		I can count up to 5 objects (including different sized objects), moving each as they are counted. I can match the set to the numeral		I can count up to 10 objects (including different sized objects), moving each as they are counted. I can match the set to the numeral.		I can count up to 20 objects (including different sized objects), moving each as they are counted. I can match the set to the numeral. Count reliably with numbers from 1 to 20 .	
Perceptual Subitising (Instant recognition of small quantities) and Conceptual Subitising (recognising small gps within a whole)									
I can recognise familiar arrangements for numbers up to 5 when on a dice or domino		I can identify quantities of objects up to 5 when placed in a dice or domino arrangement		I can identify quantities of objects from 1 to 3 when arranged randomly		I can explore arrangements of quantities within 5 using a ten frame		I can state without counting (subitise) quantities within 5 Subitise (recognise quantities without counting) up to 5 . Number ELG	
Counting pictures that cannot be moved									
I can count up to 5 objects, moving each as they are counted		I can count up to 5 pictures that cannot be moved, marking each as they are counted.		I can count up to 10 pictures that cannot be moved, marking each as they are counted		I can count up to 20 pictures, that cannot be moved, marking each as they are counted		I can count up to 20 pictures without marking using a strategy such as starting at one side, ensuring that all pictures are included and that none have been counted more than once.	

Counting Objects - Counting Beyond Ten

Counting Objects - Counting Beyond Ten				
I can count up to 10 objects, moving each as they are counted Count out a group of 10 objects from a greater set	I can recognise that when a ten frame is full this represents 10 Recognise a 10 Numicon Shape	I can arrange a group of 11 to 19 objects into 1 group of 10 plus another group	I can use structured equipment number such as bundles of art straws, Unifix (tower of 10), Ten Frame with counters to create a group of 10 plus another group	I can understand that 'teen' numbers are a group of 10 plus another number
Counting Objects - Mathematical Representations and Graphics				
I can represent a given amount up to 3 using marks and pictures and explain my jottings.	I can represent a given amount up to 5 using marks and pictures and explain my jottings.	I can represent a given amount up to 10 using marks and pictures and explain my jottings.	I can represent my simple mathematical ideas and calculations using pictures symbols and numerals and explain it.	I can represent my simple mathematical ideas and calculations using pictures symbols and numerals and explain it.
Counting Objects - Mathematical Representations				
I can represent a given amount up to 3 using objects and pictures.	I can represent a given amount up to 5 using objects and pictures.	I can represent a given amount up to 10 using objects and pictures.	I can represent a given amount up to 20 using objects and pictures.	I can represent my simple mathematical ideas and calculations using objects and pictures.
Comparing groups of objects or numbers				
I can identify a set that has more and a set that has fewer by pointing/ highlighting when requested. (Sets are very obviously different)	I can identify a set that has more and a set that has fewer by pointing/ highlighting when requested. (Range up to ten)	I can identify a set that has more and a set that has fewer using the correct language. (Range up to ten)	I can identify a set that has more and a set that has fewer using the correct language. (Range above ten and sets may be similar in amount)	I can identify the difference in number between one set and another. Have a deep understanding of number to 10, including the composition of each number. Number ELG
Reading and ordering numerals				
I can name the numerals $1-3$ when shown out of order and I can place these numerals in order.	I can name the numerals $1-5$ when shown out of order and I can place these numerals in order.	I can name the numerals 1-10 when shown out of order and I can place these numerals in order.	I can name the numerals 1-20 when shown out of order and I can place these numerals in order.	I can confidently identify and name the numeral that is after, before, between numerals to 20 .

Ordering numerals

Ordering numerals				
I can put the numerals 0 to 5 in order when all are given	I can put the numerals 0 to 9 in order when all are given	I can put the numerals 0 to 20 in order when all are given	I can find the numeral that comes before, after or between a given numeral in a range to 20.	I can order a random set of numerals within the range 0 to 20
Recording numerals				
I can make marks to represent numerals.	I can write the numerals 1 to 3 for a given purpose.	I can write the numerals 0 to 5 for a given purpose.	I can write the numerals 0 to 9 for a given purpose.	I can write the numerals 0 to 20 for a given purpose.

Ordering pictorial number representations				
I can order the pictorial representations of the numbers from 0-5.	I can order the pictorial representations of the numbers from 0-9.	I can order the pictorial representations of the numbers from 0-20.	I can find the pictorial number representation that comes before, after or between a given pictorial number representation in a range to 20 .	I can order a random set of pictorial number representations within the range 0 to 20.
Ordinal Numbers				
I can follow instructions including ordinal numbers for first, second and third. (Lining up. Order in a game/ race)	I can follow instructions including ordinal numbers for first, second, third- tenth. (Lining up. Order in a game/ race)	I can correctly use some ordinal numbers in context, e.g., lining up or racing.	I can correctly use many ordinal numbers in context, e.g., lining up or racing.	I am beginning to read and write ordinal numbers. (Labelling a picture or results of a race)
Ordering numerals				
I can put the numerals 0 to 5 in order when all are given	I can put the numerals 0 to 9 in order when all are given	I can put the numerals 0 to 20 in order when all are given	I can find the numeral that comes before, after or between a given numeral in a range to 20.	I can order a random set of numerals within the range 0 to 20

Finding one less/ one fewer (objects)

I understand the concept of finding one less object as removing one amount from within another.

I know that fewer and less mean the same thing, but fewer is used when counting objects and removing/taking away objects from an existing group. (Working with objects to 5)

I know that one less is the next number in the counting sequence when counting backwards in ones. -I find the number that is one less within 1-5 by using objects, number lines and mental recall.

I know that one less is the next number in the counting sequence when counting backwards in ones. -I find the number that is one less within 1-10 by using objects, number lines and mental recall.

I know that one less is the next number in the counting sequence when counting backwards in ones. -I find the number that is one less within 1-20 by using objects, number lines and mental recall.

Finding one more

I understand that to find one more, I need to add one object to an existing group of objects.

I understand how to find one more object with sets in a range up to 5 by correctly adding on one more object.

I know that one more is the next number in the counting sequence when counting forward in ones. -I find the number that is one more within 1-5 by using objects, number lines and mental recall.

I know that one more is the next number in the counting sequence when counting forward in ones. -I find the number that is one more within 1-10 by using objects, number lines and mental recall.

I know that one more is the next number in the counting sequence when counting forward in ones. -I find the number that is one more within 1-20 by using objects, number lines and mental recall.

Rote counting forwards				
I can join in with rote counting from 1 to 5	I can rote count from 1 to 5	I can rote count from 1 to 10.	I can rote count from 1 to 20.	I can rote count from 1 to $20+$ e.g. 50 or 100 I can verbally count beyond 20, recognising the pattern of the counting system. NP. ELG.
Counting On				
I understand the concept of addition as combining sets of objects	I know that two/three/four more is found by adding two/three/four objects to an existing group of objects	I recognise that two more is one more and another one more, three more is one more, and one more and one more, etc.	I understand and can use number lines to count on small jumps of 1, 2 or 3 more jumps.	I can count on smaller numbers using mental calculation.
Addition - combining sets of objects				
I understand the concept of addition as combining sets of objects	I understand that the terms add, total, altogether relate to combining groups of objects	I can combine two groups of objects (total within 5) counting how many are there.	I can combine two groups of objects (total within 10) counting how many are there	I can add two single-digit numbers totaling up to 10 , using practical equipment
Addition using the Part-Part-Whole Model				
I am beginning to combine two groups of objects to make a whole.	I recognise that when the groups are combined the number of objects is more than either of the individual groups	I can label the individual groups as parts.	I can label the combined group of objects as the whole	I understand the concept of addition by practically combining sets of objects to find how many using "part - part - whole"
Addition - First, Then and Now Stories				
I am beginning to combine two groups of objects to make a whole.	I can correctly follow an addition story, using First, Then and Now. I use practical equipment and my fingers to find the answers.	I can correctly tell an addition story in the correct sequence using First, Then and Now using practical equipment to support me.	I can correctly retell an addition story using first, then, now. I draw pictures and use the correct numerals to represent the parts and the whole.	I can correctly retell an addition story using first, then and now. I draw out the pictures and record number sentences to represent the story.
Number Bonds				
I can understand addition as combining sets of objects.	I can understand the terms add, total, altogether relate to the idea of combing sets of objects.	I can combine two sets (parts) to create five (whole) I can count sets in a range to 5 and practically find different ways using equipment. I can automatically recall number bonds to 5 . Automatically recall number bonds up to 5 and some number bonds to	I can combine two sets (parts) to create ten (whole) I can count sets in a range to 10 and practically find different ways using equipment.	I can recall the pairs of numbers that bonds to total ten as a set of facts. Automatically recall number bonds up to 5 and some number bonds to 10, including double facts. Number: ELG

More than/less than

More than/less than				
I can compare two collections of items that are obviously different using the language 'more' and 'less'.	I can count the amount of each group to find which has more and which has less.	I can compare two groups of the same objects e.g. 2 groups of cubes.	I can compare groups of different objects e.g. one group of cubes and one group of counters.	I can compare two groups of different sized objects (where there are more of the smaller object) e.g. more small beads and less large animal toys.
Identify groups with the same number of things				
I am beginning to understand through stories that groups can be equal.	I can say when a group is 'equal' or 'the same'.	I can check a group is equal by matching objects on a one-to-one basis.	I can change two unequal groups in and a	o two equal groups e.g. a group of 5 oup of 4 .
Comparing numbers/quantities				
I can recognise when a quantity has been unfairly shared e.g. someone getting 5 and the other person getting 3 .	I can compare numbers that are far apart from each other (this could be supported with number lines, unifix or Numicon)	I can compare numbers that are near to each other (this could be supported with number lines, unifix or Numicon)	I can compare numbers that are next to each other (this could be supported with number lines, unifix or Numicon)	When shown two numerals I can compare these and say which is greater than, less than or the same as. Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. NP:ELG

Identifying/ Finding sets that have been doubled and sets that have not been doubled

Identifying/Finding sets that have been doubled and sets that have not been doubled				
I can find two sets of objects that are the same with 1:1 adult support. (1-3 objects)	I can find two sets of objects that have the same number with some support. (1-5 objects)	I can independently find two sets of objects that have the same number. (1-5 objects)	I can independently find two sets of objects that have the same number. (1-10 objects)	I can independently find two sets of objects that have the same number. (1-10 + objects- large sets)
Understand how to make sets the same in order to double them				
I can make another set that is the same for 1, 2 or 3 objects, with 1:1 adult support.	I can make another set that is the same for 1-5 objects, with some adult support.	I can independently make another set that is the same. (1-5 objects)	I can independently make another set that is the same. (1-10 objects)	I can independently make another set that is the same. (1-10+ objects large sets)
Combine two sets of objects to double a number and count to find an answer				
I can begin to combine two sets of the same small number with 1:1 adult support. I am supported to use 1:1 counting and count all the objects.	I can combine two sets of the same number and count to find the total with some support. (1-5 objects)	I can independently combine two sets of the same number and count to find the total. (1-5 objects)	I can independently combine two sets of the same number and count to find the total. (1-10 objects)	I can independently combine two sets of the same number and count to find the total. (1-10 objects)
Combine two numbers (numerals) to double a number - Developing mental recall				
I am beginning to understand that to double, I need to add the same small number to itself. (1-3)	I understand that to double, I need to add the same small number to itself. I can do this with some support. (1-3)	I understand that to double, I need to add the same number to itself. I can double the numbers 1-5.	I understand that to double, I need to add the same number to itself. I can double the numbers 6-10.	I understand that to double, I need to add the same number to itself. I can double the numbers 10+

Sharing

I understand that when an amount has been shared equally, all the parts are the same.	I can recognise by counting, whether an amount has been shared.	I can use practical equipment to share an amount into equal parts, in real life contexts.	I understand and can identify if a number of items shared into equal parts.

I understand and can explain if a number of items shared into equal parts. Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally. NP:ELG

Halving

Halving				
I understand that when an amount has been shared equally between two, both parts are the same.	I can recognise by counting, whether an amount has been shared equally between two or not.	I can use practical equipment and equal sharing to find one half of an even number of objects, in real life contexts.	I understand that the terms halving and sharing between two relate to splitting into two equal parts.	I understand that halving is sharing into two equal parts. Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally. NP:ELG
Splitting - Part- Part Whole Model				
I can use the word 'whole' to describe a set of objects, e.g., in a group of 6 biscuits, the 'whole' is 6. I can use the word 'part' to describe the individual groups.		I can partition the 'whole' set of objects between two groups, e.g., 6 biscuits with 4 on one plate and 2 on another	I can use the word 'part' to describe each partitioned set of objects, e.g., 6 biscuits with 4 on one plate and 2 on another, the parts are 4 and 2 Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally. NP:ELG	
Pairing up - odds and evens				
I can find and make pairs of the same objects.	I can pair up objects into twos from a set and talk about if all the objects have a partner. I can talk about if it is fair or not.	I can begin to talk about if sets are odd and even by pairing up the objects into twos.	I can begin to show an understanding of numbers being odd or even without needing to use objects to pair up.	I can identify if numbers are odd or even by showing an understanding of the pattern of odd and even numbers. (mentally- not using objects) Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally. NP:ELG
Naming and identifying 2D Shapes				
I can identify (point to) some of the common 2-D shapes for star, circle, and square.	I can identify and name the common regular 2-D shapes for circle, square, triangle and rectangle/oblong.	I can name common 2-D shapes including hexagons and pentagons, and I know that rectangles and oblongs are the same shapes.	ely use the correct terms to common 2-D shapes, as I he 2-D shapes in my pictures, models and work.	I am learning to recognise and name other 2-D shapes such as irregular shapes, and quadrilaterals such as the rhombus, kite and parallelogram.
Naming and identifying 3D Shapes				
I can find/identify 3D shapes from sets of 2D and 3D shapes as I begin to recognise the properties of 3D shapes.	I can identify (point to) some of the common 3-D shapes, e.g. cube, cone or sphere.	recognise and name the 3 3-D shapes for cube, id, sphere and cone.	I can securely recognise, name and describe 3-D shapes - cube, cuboid, sphere, cone, cylinder and pyramid in the context of my pictures, models and work.	I am now learning to recognise and name other 3-D shapes such as the different types of pyramids and prisms.

Describing Shapes

Describing Shapes				
As I play with and explore shapes, I can use informal language such as pointy, round or flat.	I can understand and begin to use the terms, 'straight', 'flat', 'curved' and 'edges' as I explore and identify shapes in the environment.	I can show an understanding that sides and corners refer to 2D shapes, and I can identify these on common 2D shapes.	I can show an understanding that faces and solid refer to 3D shapes, and I can identify and talk about these on common 3D shapes.	I can describe 2D and 3D shapes, using mathematical language. Including language such as curved, pointed, sides, faces, solid, flat and vertex/vertices (corners on 3D). I can count faces and vertices.
Spatial Reasoning				
I can match simple shapes by finding a shape that is the same.	I can complete a simple jigsaw or shape puzzle.	When completing jigsaws and shape puzzles, I can talk about why shapes will not fit, or why I chose a particular shape.	I can copy 2D and 3D shape arrangements. I can explain where I am placing shapes in relation to one another. (using positional language) I can make 2 D and 3 D shapes using a range of resources.	I can explain similarities and differences between shapes. I use my understanding of shapes to create my own shape designs, models and templates.
Using 2D shapes to make pictures				
I can explore using shapes and make arrangements with shapes. (No clear representation)	I can create simple pictures with 2D shapes.	I can create pictures using 2D shapes, and I can name the shapes I used.	I can create pictures with 2D shapes and make careful choices about how shapes can tessellate and fit together.	I can create pictures using a range of 2D shapes. I explain the choices that I have made about how the shapes fit together. I describe the properties of the shapes as I explain.
Combining shapes to make new shapes - spatial reasoning				
I can sort and recognise shapes with the same properties.	I can explore putting shapes together to make different arrangements and shapes.	I can explore putting shapes together to make familiar recognisable shapes.	I can combine shapes to make familiar shapes, and I can name the shapes that I have made.	I can quickly identify how shapes can be placed together to create other shapes without the need for exploration.

I can recognise when a set of objects or shapes are placed in a repeating pattern, and when they are not and talk about them with informal language E.g., spots and points.				I can identify a simple ababab pattern, and I can say what the pattern is. E.g., red, blue, red, blue.

Repeating Patterns

I recognise when a set of objects or shapes are placed in a repeating pattern, and when they are not and talk about them with points.

I can talk about, copy, continue and make a simple ababab (2) pattern.
I notice mistakes in patterns.

I can talk about, copy, continue and make a simple abcabc patterns (3) and abbabb patterns.

I notice mistakes in patterns.

I can recognise, describe, copy continue, make and correct patterns of number, shape and objects for abcdabcd patterns (4) and AABBCAABBC patterns.

Symmetrical pictures and models (Reflective Symmetry)

Symmetrical pictures and models (Reflective Symmetry)							
I can recognise shapes and pictures that are the same.	I can recognise when shapes are the same on each side of a line and have two mirror-image halves. I explore by folding and using 'mirror lines' and mirrors.	I can find the two equal halves of a shape by using folding and mirror symmetry.	I can make simple pictures and models that include one reflective line of symmetry.				
	I show an understanding of vertical symmetry (5 years)						

I can make more detailed pictures and models that include one reflective line of symmetry. I show an understanding of horizontal symmetry (6 years) and diagonal symmetry (7years)

Comparing Weights								
I can make direct comparisons and compare the weight of 2 items.	I can find another item of similar weight to a given one.		I can use a systematic approach to directly compare each item against another.		I can make direct comparisons and compare and order the weight of 3 items from heaviest to lightest/ lightest to heaviest.			I can make direct comparisons and compare and order the weight of 3+ items from heaviest to lightest/ lightest to heaviest.
Using balances								
I can explore what happens when two objects are placed on each side of a balance scale.			I can use a balance scale to compare the weights of two objects. I understand the lower side is the heavier object and the higher side contains the lighter object.			I understand that if the balance scale is level, the objects being compared are equal in weight.		
Using mathematical language to describe measuring weight								
I understand that weight refers to how heavy or light an object is.	I can identify (point to) the heavy and light object when asked to.		I can correctly use the term, 'heavy' when referring to an object.		I can correctly use the term, 'light' when referring to an object.			I can correctly use the terms heavy/ heavier, heaviest, light, lighter and lightest as I compare, describe and order the weight of objects.
Using numbers and values to represent my measuring work								
I understand that the weight of something can be represented by a number.		I understand that to measure the weight of an object on the balance scale, the object must be placed on one side and the counting items placed at the other side, until the balance is level.		I can use non-standard units (which are not uniform, e.g. vary in size) to measure the weight of objects.			I can use non-standard units (which are uniform, e.g. Unifix) to measure the weight of objects.	

Comparing Lengths						
I can make direct comparisons and compare the length/height/width of 2 items.	I can find another item of similar length/height/width to a given one.		I can use a syste directly compare ano	atic approach to ach item against her.		I can make direct comparisons and compare and order the length of $3+$ items from longest/tallest to shortest/ shortest to longest/ tallest/ narrowest to widest.
Direct comparison of length						
I understand that if I am going to compare the length/height of two items, they need to be pointing in the same direction.		I understand that if I am going to compare the length/height of two items, it is easier if they line up at one end.		I can line up a set of objects from the same starting point, so that they can be directed compared fairly and correctly.		I can correctly identify the longest/tallest and shortest object in a set by lining items up from the same starting point and comparing fairly.
Using mathematical language to describe measuring length						
I understand that length refers to how long or short an object is.	I can identify (point to) the long and short object when asked to.		I can correctly use the term, 'long/ longer/ longest' when referring to an object.		I can correctly use the term, 'short/ shorter/ shortest' when referring to an object.	I can correctly use the terms, long/ longer/ longest, short/ shorter/ shortest', as I compare, describe and order the length of objects.
Using mathematical language to describe measuring height						
I understand that height refers to how tall or short an object is.	I can identify (point to) the tall and short object when asked to.		I can correctly use the term, 'tall/ taller/ tallest' when referring to an object.		I can correctly use the term, 'short/ shorter/ shortest' when referring to an object.	I can correctly use the terms, tall/ taller/ tallest, short/ shorter/ shortest', as I compare, describe and order the height of objects.
Using numbers and values to represent my measuring work						
I understand that the length of something can be represented by a number.			I can use non-standard units (which are not uniform, e.g. vary in size) to measure the length of objects.			I can use non-standard units (which are uniform, e.g. Unifix) to measure the length of objects.

Using language to describe the passing of time

Using language to describe the passing of time				
I can understand that I can compare events using words such as 'before' and 'after'.	I can use the word 'before', understanding that it refers to preceding a particular event and that the word 'after' refers to following a particular event or item.	I can use the word 'today', understanding that it refers to the current day.	I can use and understand that the word 'yesterday', refers to the day before today and 'tomorrow' refers to the day after today.	I can understand and correctly use language - before, after, yesterday, today, tomorrow
Sequencing familiar events/the day				
I can talk about significant times of the day, e.g. home time, lunch time, snack time, bedtime, etc.	I understand and can use the words 'before' and 'after' when describing the order of two events.	I can use the word 'between', understanding that it refers to the middle, or second of three events.	I can sequence two or three familiar events and describe the sequence using everyday language.	I can sequence four or more familiar events and describe the sequence.
Days of the Week				
I can join in with rhymes for the days of the week in order	I know that some of the words in days of the week rhymes are days	I can name the days of the week (not necessarily in order)	I know the names of the days of the week	I can say the names of the days of the week in order

Vocabulary for filling					
I can understand that capacity refers to how hold when it is full	uch a container can	I can use the terms full and empty to describe volume / capacity		I can use the terms nearly full and nearly empty to describe volume	
Comparing capacities					
I can compare the volume of two of the same containers holding different amounts	I can use a systematic approach to compare each identical container against the others		I can order a set of three identical container from most full to least full		I can order a set of three identical container from least full to most full
Comparing volume					
I understand that comparing the volume of two of the same containers that hold different amounts, is easier if they are near to each other.		I understand that comparing the volume of two of the same containers that hold different amounts, is easier if their bases are on the same level		I can compare the volumes of two of the same containers that hold different amounts and use the terms more and less	

